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Straight-line stabilization
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For finite-dimensional maps, an unstable orbit in a neighborhood of an unstable fixed point can be stabilized
by adjusting parameters so that the orbit goes to the fixed point along the straight line connecting the orbit~at
a given time! and the fixed point@Yang Ling, Liu Zengrong and Jian-min Mao, Phys. Rev. Lett.84, 67 ~2000!#.
This is called straight-line stabilization. In this paper, we derive the expression for the region of stabilization,
i.e., the region within which the straight-line stabilization method is valid. For two-dimensional maps, the
parameter adjustments needed by the stabilization method are explicitly given for nine cases. Stabilization of
unstable flows, with or without introducing a Poincare´ map, is also investigated.

PACS number~s!: 05.45.Gg, 05.45.Pq
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I. INTRODUCTION

Chaos and instability appear, but are sometimes unde
able, in many practical problems. An unstable orbit can
guided into a stable manifold~if such a manifold exists! and
is therefore stabilized, as suggested by Ott, Grebogi,
Yorke @1#. After their work, various methods for stabilizatio
or chaos control have been proposed@2–5#, and many appli-
cations of chaos control in different disciplines have be
found @6–8#.

The idea of the straight-line stabilization method, as giv
in Ref. @5#, is to guide an unstable orbit near an unsta
fixed point to go to the fixed point directly along the straig
line connecting the orbit~at a given time! and the fixed point.
In this article, we further derive the expression for the size
the stabilization region~i.e., the region where the stabiliza
tion method is valid!. The knowledge about the stabilizatio
region is important, and it is particularly so if the stabiliz
tion is needed only in a certain region in phase space a
outside the region, disturbance to the original system by
stabilization process is required to be as small as poss
We also provide a means for controlling the size of the s
bilization region, which may be needed in practical pro
lems. Furthermore, for two-dimensional maps, explicit e
pressions of the parameter adjustments needed by
straight-line stabilization are givenfor nine cases. Stabiliza-
tion of unstableflowswith or without introducing a Poincare´
map is also investigated by using the idea of the straight-
stabilization method.

This paper is organized as follows. The derivation of t
expression for the stabilization region is presented in Sec
The nine cases for the straight-line stabilization in tw
dimensional maps are listed in Sec. III. The flow stabilizat
is investigated in Sec. IV. Conclusions are drawn in Sec.

II. REGION OF STABILIZATION

We formulate the system to be controlled by mapT:jn
→jn11, where

jn115Fe~jn!. ~1!
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Here,jPRN is the dynamical variable (N being a finite in-
teger! andFe(jn) is the mapping function with parametere
PRN. Let j* be a fixed point of the map with a nonzeroe
and j

*
0 be an unstable fixed point of the map withe50.

Without loss of generality, we assume that proper coordin
changes have been made so thatj

*
0 is located at the origin.

The straight-line stabilization method requires

jn115kjn , ~2!

wherek is a real constant with absolute value less than o
To determine the region of stabilization, we first expa

each component ofjn11 as a Taylor series aboutjn5j* ,
i.e.,

jn112j* 5 J̃~jn2j* !1D1~ ujn2j* u2!, ~3!

whereJ̃5(]Fe /]jn)jn5j
*

is the Jacobian matrix of the ma

evaluated atjn5j* , and vectorD1(ujn2j* u2) is the re-
mainder in the expansion, whose leading term is of the s
ond order inujn2j* u. Matrix J̃ can be approximated by th
Jacobian matrix of the map evaluated atj

*
0 , J

5(]Fe /]jn)jn5j
*
0 . Therefore Eq.~3! becomes

jn112j* 5J~jn2j* !1D1~ ujn2j* u2!1D2~ ujn2j* u2!,
~4!

where D2(ujn2j* u2)5( J̃2J)(jn2j* ) is the error intro-
duced in replacingJ̃ by J. Secondly, we expand componen
of j* aboute50 and write

j* 5Me1D3~ ueu2!, ~5!

where M5(]j* /]e)e50 is an N3N matrix, and vector
D3(ueu2) is the remainder in the expansion. Eliminatej* and
jn11 in Eqs.~2!, ~4! and ~5!, and we have

~J2I !Me5~J2kI !jn1D1~ ujn2j* u2!

1D2~ ujn2j* u2!2~J2I !D3~ ueu2!, ~6!

whereI is theN3N identity matrix.
4846 ©2000 The American Physical Society
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Up to the first order inujn2j* u and ueu, i.e., when
D1(ujn2j* u2), D2(ujn2j* u2), and D3(ueu2) are all ne-
glected, Eq.~6! becomes

en5M21~J2I !21~J2k1I !jn . ~7!

Here we have assumed matrices (J2I ) andM are invertible,
redenotede by en to indicate that the parameter adjustme
is for thenth iteration of map~1!, and redenotedk by k1 to
indicate the result is up to the first order inujn2j* u andueu.
Equation~7! is the expression of the parameter adjustmen
the straight-line stabilization.

Obviously, the parameter adjustment given by Eq.~7! can
stabilize the unstable orbit only if the expansion remainde
D1(ujn2j* u2), D2(ujn2j* u2, and D3(ueu2), are all negli-
gible in comparison with the linear terms. This means th
from Eq. ~6!, the stabilization method is valid only if th
following condition is satisfied:

ujnu.
1

12uk1u
uD1~ ujn2j* u2!

1D2~ ujn2j* u2!2~J2I !D3~ ueu2!u. ~8!

Here we have assumed factork1 has the same sign ask,
based on the fact thatk1 is an approximation tok. Equation
~8! is the expression for the size of the stabilization regi
Unstable orbits in the region can be stabilized by
straight-line stabilization method, but those outside the
gion cannot. In the stabilization region, the original system
changed, due to the stabilization process@i.e., due to the
change in the linear terms of the map, as given in Eq.~7!#, so
much that even the stability property is changed. Outside
region, however, effects of the change in the linear terms
the map are suppressed by the~unchanged! nonlinear terms.
In this sense, disturbance to the original system outside
region is less than that within the region. The stabilization
global if the stabilization region is the wholeN-dimensional
space, and local if the region is bounded. A local stabili
tion is desirable when stabilization is needed only in a c
tain region or when it is required in a practical problem th
the change made to the original system for the purpose
stabilization is as small as possible. Equation~8! provides an
estimate about how local the stabilization is and how lo
the change to the original system is. Furthermore the c
stantk1 in Eq. ~8! can serve as a means for controlling t
size of the stabilization region. Varyingk1 ~but keeping
uk1u,1), the size of the stabilization region changes and
does the locality of the disturbance to the system.

As an example, consider the following two-dimension
map:

xn1152xn~12xn!1p,

yn1152yn~12xn!1q. ~9!

This map is in form~1! if we let j5(x, y) ande5(p, q).
The map has a fixed point near the originj* 5(x* , y* )
where x* 5 1

4 (12A118p) and y* 5q/(2x* 21). When p
5q50, the fixed pointj

*
0 5(0, 0) is fully unstable. Matri-

cesJ andM are both diagonal. Diagonal elements ofJ are 2
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and 2, and those ofM are21 and21. According to Eq.~7!,
the parameters should be adjusted to

pn5~k22!xn , qn5~k22!yn . ~10!

The size of the stabilization region can be estimated by us
Eq. ~8!. Let D11 and D12 be the components of vecto
D1(ujn2j* u2). Up to the second-order terms inujn2j* u,
they are given by

D115
1

2

]2xn11

]xn
2 ~xn2x* !21

]2xn11

]xn]yn
~xn2x* !~yn2y* !

1
1

2

]2xn11

]yn
2 ~yn2y* !2, ~11!

D125
1

2

]2yn11

]xn
2 ~xn2x* !21

]2yn11

]xn]yn
~xn2x* !~yn2y* !

1
1

2

]2yn11

]yn
2 ~yn2y* !2. ~12!

Therefore

D1~ ujn2j* u2!5„22~xn2x* !2, 22~xn2x* !~yn2y* !….

It is easy to see that,D2(ujn2j* u2)5„24x* (xn2x* ),
22y* (xn2x* )22x* (yn2y* )…, up to the second order in
ujn2j* u. Vector D3(ueu* u2) can be approximated in a wa
similar to that forD1(ujn2j* u2) and the result isD3(ueu2)
5(2p2, 2pq). Substituting these results into Eq.~8!, we
have

uxnu,
1

2
A12uk1u. ~13!

This is the estimate to the region of stabilization. Figure
shows numerical results for the example. The origin is
fully unstable fixed point of the original map, i.e., map~9!
with p5q50. A point in the dotted region goes to the orig
under iterations of the map with the control parameters gi
by Eq. ~7!. The region is given by20.25,x,0.5 in the

FIG. 1. Numerical results of iterating map~9! with parameters
given by Eq. ~10! for k50.5. The dotted region is where th
straight-line stabilization method works.
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figure, while the theoretical estimate given by Eq.~8! is
20.35,x,0.35. We consider the agreement acceptable

III. PARAMETER ADJUSTMENTS FOR TWO-
DIMENSIONAL MAPS

For two-dimensional (2d) maps, dependence of the p
rameter adjustment on the eigenvalues of matricesJ andM
can be explicitly written down. As a 232 matrix, the Jaco-
bian matrixJ for a 2d map has the following three typica
forms:

J15S m1 0

0 m2
D , J25mS cosa 2sina

sina cosa D ,

J35S m0 1

0 m0
D , ~14!

wherem, m0 , m1 , m2, anda are all real, and 0<a,2p.
If matrix J is not in one of these forms, it can be transform
into one of them by a coordinate change forj. Similarly, the
typical forms of matrixM are

M15S n1 0

0 n2
D , M25nS cosb 2sinb

sinb cosb D ,

M35S n0 1

0 n0
D , ~15!

wheren, n0 , n1 , n2, and b are all real, and 0<b,2p.
Therefore Eq.~7! for a planar mapT:jn→jn11, where j
5(x,y) ande5(p,q), can be written separately for the fo
lowing nine cases: IfJ5J1 andM5M1,

pn5
1

n1
a1xn ,

qn5
1

n2
a2yn ; ~16!

if J5J1 andM5M2,

pn5
1

n
~a1xncosb1a2ynsinb!,

qn5
1

n
~2a1xnsinb1a2yncosb!; ~17!

if J5J1 andM5M3,

pn5
1

n0
S a1xn2

a2

n0
ynD ,

qn5
1

n0
a2yn ; ~18!

if J5J2 andM5M1,

pn5
1

n1
~b1xn1b2yn!,
qn5
1

n2
~b1yn2b2xn!; ~19!

if J5J2 andM5M2,

pn5
1

n
@~b1xn1b2yn!cosb1~b1yn2b2xn!sinb#,

qn5
1

n
@2~b1xn1b2yn!sinb1~b1yn2b2xn!cosb#;

~20!

if J5J2 andM5M3,

pn5
1

n0
F S b11

b2

n0
D xn1S b22

b1

n0
D ynG ,

qn5
1

n0
~b1yn2b2xn!; ~21!

if J5J3 andM5M1,

pn5
1

n1
~a0xn2b0yn!,

qn5
1

n2
a0yn ; ~22!

if J5J3 andM5M2,

pn5
1

n
@~a0xn2b0yn!cosb1a0ynsinb#,

qn5
1

n
@~b0yn2a0xn!sinb2a0yncosb#; ~23!

if J5J3 andM5M3,

pn5
1

n0
S a0xn2b0yn2

1

n0
a0ynD ,

qn5
1

n0
a0yn ; ~24!

where ai5(m i2k)/(m i21), i 50,1,2, b05(12k)(m0
21)2, b15@k(12m cosa)1m(m2cosa)#/(122m cosa
1m2) andb25m(12k)sina/(122m cosa1m2).

IV. STABILIZATION OF FLOWS

Flow stabilization can be investigated in the followin
two ways. The first is to introduce a Poincare´ map for the
flow and then study the stabilization problem of the ma
The second is to stabilize the flow itself directly, witho
introducing a Poincare´ map. We illustrate the two ways b
the following example flow on the plane:

ṙ 52r ~12r !1p, ,upu,
1

4
,

u̇51, ~25!
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where (r ,u) are the polar coordinates andp is the control
parameter. Obviously,r 51 is a limit cycle of the flow with
p50, which is unstable because (d/dr)@2r (12r )#ur 5151
.0. We want to stabilize a flow not on the cycle and the
fore leaving the cycle.

First, we stabilize the flow via a Poincare´ map, atu50,
say. Let initial conditions ber (t50)5r 0 (r 0 is a positive
real constant! andu(t50)50. To use the results obtained
the previous sections, the fixed point of the map correspo
ing to the limit cycler 51 should be located at the origin
We therefore make the coordinate changer→r 85r 21
and drop the prime for simplicity of notation. By doin
so, we haver n5r (t52np)52 1

2 2a12a@12e4npa(r 01 1
2

2a)/(r 01 1
2 1a)#21, where a5 1

2 A124p and n>0. Thus
the Poincare´ map is given by

r n1152
1

2
2a12aF 12e4pa

r n1
1

2
2a

r n1
1

2
1a

G 21

. ~26!

For p50, the map isr n115211@12e2pr n /(r n11)#21,
whose Jacobian matrix evaluated at the fixed pointr

*
0 50 is

J5e2p. It is easy to find that map~26! has the fixed point
r * 52 1

2 1a and thereforeM5(]r * /]p)p50521. From
Eq. ~7!, the parameter adjustment required to stabilize
unstable orbit is given by

pn52
e2p2k

e2p21
r n'2r n . ~27!

This parameter adjustment is to be performed only when
flow passes the lineu50 and therefore may be difficult to b
implemented in practical problems.

The unstable flow can also be stabilized directly, witho
introducing a Poincare´ map. To force the unstable flow to b
closer to the limit cycle when time goes on, parametep

should be adjusted so thatṙ ,0 whenr .1 and ṙ .0 when
r ,1. A simple choice satisfying these requirements is

p5kr ~12r !, for k.1. ~28!

Figure 2 shows two numerical solutions of flow~25!, one
with control and the other without control, but both starti
from the same point (r ,u)5(1.000 01,0). Thethin curve is
the flow without control (p50), which leaves the circle o
r 51 quickly ~two revolutions are shown in the figure!. The
s
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t

thick curve is for the flow with the control parameter give
by Eq.~28! andk51.001, which remains near the circle~ten
revolutions are shown in the figure!.

The stabilization given by the parameter adjustment~28!
is global, i.e., the region of stabilization is the whole plan
@The stabilization becomes local if we require, for a giv
constantR.1, the parameter adjustment is given by Eq.~28!
for r<R and zero forr .R. In this case, the stabilization
region is the diskr<R.# On the other hand, the stabilizatio
for the Poincare´ map is local because the parameter adju
ment given in Eq.~27! is linear in r n , and the region of
stabilization can be found by using Eq.~8!.

V. CONCLUSIONS

~i! The region of stabilization for the straight-line stabi
zation method has been estimated, as given in Eq.~8!. The
size of the region can be changed by varying the constank1
involved in Eq.~8!. ~ii ! For two-dimensional maps, explici
formulas for the parameter adjustments have been prov
for the nine cases.~iii ! Unstable flows can be stabilized wit
or without introducing a Poincare´ map.
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FIG. 2. Stabilization of an unstable flow of Eq.~25!. The thin
curve is for the unstable flow to be controlled, which leaves
limit cycle of r 51. The thick circle is for the controlled flow
which remains near the limit cycle.
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